Viewing entries in
L-tryptophan

Tryptophan, oxygen, and sleep

Sleep: Tryptophan administered at night is known increase physiological concentrations of both serotonin and melatonin, which makes it a useful supplement for improving sleep latency in mild insomniacs.

The therapeutic potential for tryptophan and melatonin: possible roles in depression, sleep, Alzheimer's disease and abnormal aging

Evidence suggests that stress and/or a dietary lack of tryptophan may make deficiencies of serotonin and melatonin common. In addition, older animals and human beings have a reduced ability to synthesize melatonin. Disorders of melatonin levels and rhythms are suggested to be a cause of affective disease, abnormal sleep, Alzheimer's disease, and some age related disorders. If these ideas prove to be true, then preventive measures are possible.

L-tryptophan administered to chronic sleep-onset insomniacs: late-appearing reduction of sleep latency

The effects of 3 g L-tryptophan on sleep, performance, arousal threshold, and brain electrical activity during sleep were assessed in 20 male, chronic sleep-onset insomniacs (mean age 20.3 +/- 2.4 years). Following a sleep laboratory screening night, all subjects received placebo for 3 consecutive nights (single-blind), ten subjects received L-tryptophan, and ten received placebo for 6 nights (double-blind). All subjects received placebo on 2 withdrawal nights (single-blind). There was no effect of L-tryptophan on sleep latency during the first 3 nights of administration. On nights 4-6 of administration, sleep latency was significantly reduced. Unlike benzodiazepine hypnotics, L-tryptophan did not alter sleep stages, impair performance, elevate arousal threshold, or alter brain electrical activity during sleep.

Effects of L-tryptophan on sleepiness and on sleep

Over the past 20 yr, 40 controlled studies have been described concerning the effects of L-tryptophan on human sleepiness and/or sleep. The weight of evidence indicates that L-tryptophan in doses of 1 g or more produces an increase in rated subjective sleepiness and a decrease in sleep latency (time to sleep). There are less firm data suggesting that L-tryptophan may have additional effects such as decrease in total wakefulness and/or increase in sleep time. Best results (in terms of positive effects on sleep or sleepiness) have been found in subjects with mild insomnia, or in normal subjects reporting a longer-than-average sleep latency. Mixed or negative results occur in entirely normal subjects--who are not appropriate subjects since there is no room for improvement. Mixed results are also reported in severe insomniacs and in patients with serious medical or psychiatric illness.

Effects of tryptophan loading on human cognition, mood, and sleep

Modulating central serotonergic function by acute tryptophan depletion (ATD) has provided the fundamental insights into which cognitive functions are influenced by serotonin. It may be expected that serotonergic stimulation by tryptophan (Trp) loading could evoke beneficial behavioural changes that mirror those of ATD. The current review examines the evidence for such effects, notably those on cognition, mood and sleep. Reports vary considerably across different cognitive domains, study designs, and populations. It is hypothesised that the effects of Trp loading on performance may be dependent on the initial state of the serotonergic system of the subject. Memory improvements following Trp loading have generally been shown in clinical and sub-clinical populations where initial serotonergic disturbances are known. Similarly, Trp loading appears to be most effective for improving mood in vulnerable subjects, and improves sleep in adults with some sleep disturbances. Research has consistently shown Trp loading impairs psychomotor and reaction time performance, however, this is likely to be attributed to its mild sedative effects. (c) 2009 Elsevier Ltd. All rights reserved.

Tryptophan and 5-hydroxytryptophan for depression

5-HTP (Hydroxytryptophan) and tryptophan have been examined to see whether these treatments are effective, safe and acceptable in treating unipolar depression in adults. The researchers reported that the symptoms of depression decreased when 5-HTP and tryptophan were compared to a placebo (non-drug). However, side effects had occurred (dizziness, nausea and diarrhoea). They also reported that tryptophan has been associated with the development of a fatal condition. More evidence is needed to assess efficacy and safety, before any strong and meaningful conclusions can be made. Until then, the reviewers propose that the use of antidepressants which have no known life threatening side effects remain more attractive. The review sets out the required methodology for effectively studying these substances in proper controlled studies.

Effect of diet on serotonergic neurotransmission in depression

Mood: Consuming tryptophan increases the concentration of tryptophan in the brain and synthesis of serotonin. “The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B6. Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods.”